ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

Computer Arithmetic

INTEGER NUMBERS

UNSIGNED INTEGER NUMBERS
= n— bit number: b,_1b,,_5 ... by.
= Here, we represent 2" integer positive numbers from 0 to 2™ — 1.

SIGNED INTEGER NUMBERS

= n-bit number b,,_;b,,_, ... b1 by.

= Here, we represent integer positive and negative numbers. There exist three common representations: sign-and-magnitude,
1’s complement, and 2's complement. In these 3 cases, the MSB always specifies whether the number is positive (MSB=0)
or negative (MSB=1).

= Itis common to refer to signed numbers as numbers represented in 2's complement arithmetic.

SIGN-AND-MAGNITUDE (SM):

= Here, the sign and the magnitude are represented separately.

= The MSB only represents the sign and the remaining n — 1 bits the magnitude. With n bits, we can represent 2™ — 1 numbers.
= Example (n=4): 0110 = +6 1110 = -6

1'S COMPLEMENT (1C) and 2'S COMPLEMENT (2C):

= If MSB=0 — the number is positive and the remaining n — 1 bits represent the magnitude.

= If MSB=1 — the number is negative and the remaining n — 1 bits do not represent the magnitude.

= When using the 1C or the 2C representations, it is mandatory to specify the number of bits being used. If not, assume the
minimum possible number of bits.

1'S COMPLEMENT 2’'S COMPLEMENT
Range of values =214 1t02"1 -1 —2n 121 -1
Numbers represented 2" —1 2n
mﬁggg sign of a Apply 1C operation: invert all bits Apply 2C ogperation: invert all bits and add 1
v +6=0110 — -6=1001 v +6=0110 — -6=1010
v’ +5=0101 — -5=1010 v’ +5=0101 — -5=1011
v’ +7=0111 — -7=1000 v’ +7=0111 — -7=1001
v If -6=1001, we get +6 by applying the 1C | v* If -6=1010, we get +6 by applying the 2C
operationto 1001 — +6 = 0110. operationto 1010 — +6 = 0110.
v" Represent -4 in 1C: We know that v" Represent -4 in 2C: We know that
+4=0100. To get -4, we apply the 1C +4=0100. To get -4, we apply the 2C
operation to 0100. Thus, -4 = 1011. operation to 0100. Thus -4 = 1100.
Examples v" Represent 8 in 1C: This is a positive v" Represent 12 in 2C: This is a positive number
number — MSB=0. The remaining n — 1 — MSB=0. The remaining n — 1 bits
bits represent the magnitude. represent the magnitude.
Magnitude (unsigned number) with a min. Magnitude (unsigned number) with a min. of
of 4 bits: 8=1000,. Thus, with @ minimum 4 bits: 12=1100,. Thus, with a minimum of
of 5 bits, 8=01000, (1C). 5 bits, 12=01100, (2C).
v' What is the decimal value of 1100? We v' What is the decimal value of 11017 We first
first apply the 1C operation (or take the 1's apply the 2C ogperation (or take the 2's
complement) to 1100, which results in complement) to 1101, which results in
0011 (+3). Thus 1100=-3. 0011 (+3).Thus 1101=-3.

Getting the decimal value of a number in 2C representation:
= If the number B is positive, then MSB=0: b,_; = 0.

n—-1 n-2 n—-2
SB= Z b2t = b, 271 + z b2t = z b2t (@)
i=0 i=0 i=0

= If the number B is negative, b,,_, = 1 (MSB=1). If we take the 2’s complement of B, we get K (which is a positive number).
In 2's complement representation, K represents —B. Using K = 2™ — B (K and B are treated as unsigned numbers):

1 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

n—-1 n—1
Z k2t = 2" — Z b;2¢

= We want to express -K in terms of b;, smce the mteger value -K |s the actual integer value of B.
K =- Zkz‘—sz‘—Z"—bn is 1+Zb2‘ 2n = 27 (b,,_ 1—2)+Zb21

B=—K=2m 1(1—2)+Zb21=—2" 1+Zb2‘)

= Using (a) and (b), the formula for the decimal value of B (elther posmve or negatlve) is:

B=—b, 271+ Z b2

= Examples: 10110, = —2% 4+ 22 4+ 21 = —10 11000, = —2* 4+ 23 = -8

SUMMARY

= The following table summarizes the signed representations for a 4-bit nhumber:

n=4: SIGNED REPRESENTATION
bsbabibo Sign-and-magnitude 1's complement 2’s complement
0 00O 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 0 =7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 0 -1
Range for n bits: | [-(2"1—1),2"t—1] | [-(2"1—1),2"1—1] | [-2" 271 —1]

= Keep in mind that 1C (or 2C) representation and the 1C (or 2C) operation are very different concepts.

= Note that the sign-and-magnitude and the 1C representations have a redundant representation for zero. This is not the case
in 2C, which can represent an extra number.

= Special case in 2C: If —2"! is represented with n bits, the number 2"~ 'requires n + 1 bits. For example, the number -8
can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which results in 1000. But
1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000.

= Representation of Integer Numbers with n bits: b,,_b,,_, ... b,.

UNSIGNED SIGNED (2C)
n-1 n—
Decimal Value D= Z b;2¢ D=-2"1p,_, + Z b;2!
i=0 i=0
Range of values [0,2" —1] [—2n1,2n1 _ 1]

SIGN EXTENSION

= UNSIGNED NUMBERS: Here, if we want to use more bits, we just append zeros to the left.
Example: 12 = 1100, with 4 bits. If we want to use 6 bits, then 12 = 001100,.

= SIGNED NUMBERS:
v Sign-and-magnitude: The MSB only represents the sign. If we want to use more bits, we append zeros to the left,
with the MSB (leftmost bit) always being the sign.
Example: -12 = 11100, with 5 bits. If we want to use 7 bits, then -12 = 1001100..

v' 2's complement (also applies to 1C): In many circumstances, we might want to represent numbers in 2's complement
with a certain number of bits. For example, the following two numbers require a minimum of 5 bits:
10111, = —2*+ 22+ 21 +20=—9 01111, =23+ 22 + 21 + 20 = +15

2 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

What if we want to use 8 bits to represent them? In 2C, we sign-extend: If the number is positive, we append 0's to the
left. If the number is negative, we attach 1's to the left. In the examples, we copied the MSB three times to the left:
11110111, = —2* + 22+ 21 +2° = —9 00001111, = 23 + 22 4+ 21 +2° = +15

Demonstration of sign-extension in 2C arithmetic:

To increase the number of bits for representing a number, we append the MSB to the left as many times as needed:
b-n__lb-n__z e bo = bn—l e bn—lbn—lbn—z e bo
Examples: 00101, = 0000101, =22 +2°=5
10101, = 1110101, = —2* +22 4+ 20 = —26 + 25 + 24 + 22+ 20 = —11

We can think of the sign-extended number as an m-bit number, where m > n:
bp_q ebp_1by_1bp_z ..bg = bpy_q .byby_1by_y ...by, Where: b; = b,_;,i =n,n+1,..,m—1

We need to demonstrate that b,,_1b,,_ ... b, represents the same decimal number as b,,_; ... by_1by_1bp_5 ... by, i.€., that the
sign-extension is correct for any m > n.
We need that: by,_; ... byby_1bp_p ..by = by_q by_1by_1bp_p ..bg = by_1by_y ... by

Using the formula for 2's complement numbers:
m-2 n-2

—gm-ip, 1+22‘b = —2n-1p,, 1+22b

_omlp 4 Z 2ip, +Zzb = _on-1p 1+ZZb —_pmlp 4 Z 2ip; = —2n1p,

i= 1 i=n-1
~2M by + bys Z 21 = —2" b,
. i=n-1
) Tk _ THl _ 21+1
Recall: Zkr— T r¢1—>221— T3 =1 _ 2k
Then:
_Zm_lbn—l + bn—l(zm_1 - 271—1) = Zn_lbn 1
—2m-1p . 42m-1p, . —2nlp = —pnlp . —pn-lp = _pn-lp
ADDITION/SUBTRACTION
UNSIGNED NUMBERS C O A O O o w o
= The example depicts addition of two 8-bit numbers using binary o i lo o e I TS s
and hexadecimal representations. Note that every summation _
of two digits (binary or hexadecimal) generates a carry when 0x3F = 0 0 1 1 1 1 1 1 4 iy 3 F 4
OxB2 =1 0110010 _— B 2

the summation requires more than one digit. Also, note that co
is the carry in of the summation (usually, ¢ is zero).

The last carry (cg when n=8) is the carry outof the summation. O0xF1 =1 1110 0 0 1 F 1
If it is *0’, it means that the summation can be represented with

8 bits. If it is ‘1’, it means that the summation requires more MR TR TR R T R ATERTIRTS
than 8 bits (in fact 9 bits); this is called an overflow. In the SO G S G O M S S
example, we add two numbers and overflow occurs: anextra 0x3F = 0 0 1 1 1 1 1 1 + 3 F +
bit (in red) is required to correctly represent the summation. 0xCc2 =/, 1 1 0 0 0 0 1 0] c 2
This carry out can also be used for multi-precision addition.
10000O0O0O0CT1 101
Arithmetic Overflow:
= Suppose we have only 4 bits to represent binary numbers. Overflow cout=0 0101 +

occurs when an arithmetic operation requires more bits than the bits N Overflow 1001
we are using to represent our numbers. For 4 bits, the range is 0 to 15.

cout=1 1011 +
Overflow! l 0110

If the summation is greater than 15, then there is overflow. 1110 10001
For n bits, overflow occurs when the sum is greater than 2™ — 1. Also: overflow = ¢, = Coy- 01011 +
Overflow is commonly avoided by sign-extending the two operators. For unsigned numbers, sign- 00110
extension amounts to zero-extension. For example, if the summands are 4-bits wide, then we append

a 0 to both summands, using 5 bits to represent the summands (see figure on the right). e 10001

cout=0
For two n-bits summands, the result will have at most n + 1 bits (2" — 1 + 2" — 1 = 21 — 2),

3 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design

Winter 2017
Subtraction:
= In the example, we subtract two 8-bit numbers using the e == = o - o
binary and hexadecimal (this is a short-hand notation) P S I I RO
representations. A subtraction of two digits (binary or 032 = 001 11010 - 3 A -
hexadecimal) generates a borrow when the difference is 0%2F = 00 1 0 1 1 1 1 = 5
negative. So, we borrow 1 from the next digit so that the X _
difference is positive. Recall that a borrow in a subtraction of 0x0B = 0 0 0 0 1 0 1 1 0 B
two digits is an extra 1 that we need to subtract. Also, note
that bg is the borrow in of the summation. This is usually zero. TN TS EANGESTNSR TRR
= The last borrow (bs when n=8) is the borrow out of the o088 8a oag
subtraction. If it is zero, it means that the differenceis positve gx3a = 0 0 1 1 1 0 1 0 - 3 A -
and can be represented with 8 bits. If itisone, it meansthat 475 = g 1 1101 0 1 = 75
the difference is negative and we need to borrow 1 from the
next digit. In the example, we subtract two 8-bit numbers,the 0xC5 =1 1 0 0 0 1 0 1 C 5

result we have borrows 1 from the next digit.

Subtraction using unsigned numbers only makes sense if the result is positive (or when doing multi-precision subtraction).
In general, we prefer to use signed representation (2C) for subtraction.

SIGNED NUMBERS (2C REPRESENTATION)

The advantage of the 2C representation is that the summation can be carried out using the same circuitry as that of the
unsigned summation. Here the operands can be either positive or negative.

The following are addition examples of two 4-bit signed numbers. Note that the carry out bit DOES NOT necessarily indicate
overflow. In some cases, the carry out must be ignored, otherwise the result is incorrect.

+5 = 0101 + -5 = 1011 + +5 = 0101 + -5 = 1011 +

+2 = 0010 +2 = 0010 -2 = 1110 -2 = 1110

+7 = 0111 -3 = 1101 +3 =%0011 -7 =¢1001
A A

cout=0 cout=0 cout=1 cout=1

Now, we show addition examples of two 8-bit signed numbers. The carry out cg is not enough to determine overflow. Here,
if cg#¢7 there is overflow. If cg=c7, no overflow and we can ignore cs. Thus, the overflow bit is equal to cs XOR ¢;.

Overflow: It occurs when the summation falls outside the 2's complement range for 8 bits: [—27,27 — 1]. If there is no
overflow, the carry out bit must not be part of the result.

O+4o+4d 4000 4O <0000 OO0
L1 1 T | | | T A T L0 T | T T T [T T
LO)O L’)\ ()w Um ‘5]‘ Um UN UH L? UOO U,\ Uw Um Uq. J’) UN J &?
+92 =01011100 + -92=10100100+
+78 =01001110 -78 =10110010
+170 =010101010 -170 =101 010110
overflow = cg®c,=1 -> overflow! overflow = cg®c,=1 -> overflow!

+170 ¢ [-27, 27-1] -> overflow!

L1 1 | | A | [R 1}
UDO U’\ Uw Um J U‘ﬂ L‘)\‘ UH UO UOO J (:)D Um Uq‘ Um UN J L)o
+92 =01011100 + -92 =10100100 +
-78 =1 0110010 +78 = 0.1 001110
+14 =X 00001110 -14 =X11110010
overflow = c¢g®c,=0 -> no overflow overflow = cg®c,=0 -> no overflow

+14 € [-27, 27-1] -> no overflow -14 € [-27, 27-1] -> no overflow

To avoid overflow, a common technique is to sign-extend the two AR TARTARTN 8 AT A I

summands. For example, for two 4-bits summands, we add an © Qoo ooe © L0 oo

extra bit; thereby using 5 bits to represent the operators. t7=00111+ -7=11001+
+2 = 00010 -2 =11110
+9 =01001 -9 =10111

4 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design Winter 2017

Subtraction

= Note that A — B = A+ 2C(B). To subtract two signed (2C) numbers, 7 -3 =7 + (-3): AFRTARTARTIN &
we first apply the 2's complement operation to B (the subtrahend), and $320011 — -3=1101 © o oo wu

then add the numbers. So, in 2's complement arithmetic, subtraction +7=0111 +
ends up being an addition of two numbers. cout =1 -3 =1101
overfow=0 ., _ 5 ;1 o ¢

= For an n-bit number, overflow occurs when the summation/addition
result is outside the range [-2""1,2"~1 — 1]. The overflow bit can quickly be computed as overflow = ¢,®c,_1. cn = Cout-

= The largest value (in magnitude) of addition of two n-bits operators is —2"~1 + (—2"1) = —2". In the case of subtraction,
the largest value (in magnitude) is —2"~1 — (2"~ — 1) = —2™ + 1. Thus, the addition/subtraction of two n-bit operators
needs at most n + 1 bits. ¢, = ¢, IS used in multi-precision addition/subtraction.

SUMMARY
= Addition/Subtraction of two n-bit numbers:
UNSIGNED SIGNED (20)
Overflow bit Cn cn®cy_q
Overflow occurs when: A+ Bg[0,2"—1], ¢, =1 (A+B)g[-2m1,2" 1 —1], ¢, Pc,_,=1
Result range: [0,27*1 — 1] A+Be[-2"2"—-2], A—B€e[-2"+1,2" - 2]
Result requires at most: n + 1 bits

= In general, if one operand has n bits and the other has m bits, the result will have at most max(n, m) + 1. When adding
both numbers, we first force (via sign-extension) the two operators to have the same number of bits: max(n, m).

MULTIPLICATION OF INTEGER NUMBERS

UNSIGNED NUMBERS
= Simple operation: first, generate the products, then add up all the columns (consider the carries).

a, a, a; a, x Lo1a P
b b b b 11 x X 13 x X

- - _ - 13 ‘ 1101 15 » 1111

asby aby aby aghg ———- dHdHHdO o0 O --- _ggg T o0oo°

asb, a)b; a;b; agb, 143 1011 195 1101

asb, a,b, a;b, agb, . 8 2 2 0 . 1 é S 1
asb; a,b; a;by agb
303 axb3 a,03 apb3 1011 1101
Pq DPs Ps Pag b3 Po <51 Py 10001111 11000011

= If the two operators are n-bits wide, the maximum result is (2™ — 1) x (2" — 1) = 22" — 2™*1 4+ 1, Thus, in the worst case,
the multiplication requires 2n bits.

= If one operator in n-bits wide and the other is m-bits wide, the maximum resultis: (2" — 1) x (2™ — 1) = 2"tm — 2" — 2™ 4
1. Thus, in the worst case, the multiplication requires n + m bits.

SIGNED NUMBERS (2C)

= A straightforward implementation consists of checking the sign of the multiplicand and multiplier. If one or both are negative,
we change the sign by applying the 2's complement operation. This way, we are left with unsigned multiplication.

= As for the final output: if only one of the inputs was negative, then we modify the sign of the output. Otherwise, the result
of the unsigned multiplication is the final output.

101 xgh 011 x 010xgh 010 x L1 1xgh001x 011 x
010 010 110 010 110 010 010
000 000 000 000
011 010 001 011
000 000 000 000
000110 000100 000010 000110
¥ ¥
111010 111100

* Note: If one of the inputs is —2™~1, then when we change the sign we get 2"~1, which requires n + 1 bits. Here, we are
allowed to use only n bits; in other words, we do not have to change its sign. This will not affect the final result since if we
were to use n + 1 bits for 2"~1, the MSB=0, which implies that the last row is full of zeros.

5 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design Winter 2017
1 00 x 1 00 x 011 x 011 x 1 00 x 100 x
011 . 011 100 ‘ 100 1 00 . 100
100 00O 00O
100 00O 00O
00O 011 100
001100 001100 01 00O0O
¥ ¥
110100 110100
= Note: If one input is negative and the other is positive, we can use the negative cl) S g é X . é 2 2 é *
number as the multiplicand and the positive number as the multiplier. Then, we can
operate as if it were unsigned multiplication, with the caveat that we need to sign 0000000O0O
extend each partial sum to 2n bits (if both operators are n-bits wide), or to n + m (if 1111001
one operator is n-bits wide and the other is m-bits wide). é é é 8 8 1
11010110

= For two n-bit operators, the final output requires 2n bits. Note that it is only because of the multiplication —2""1 x —2n~1 =
22n=2 that we require those 2n bits (in 2C representation).

= For an n-bit and an m-bit operator, the final output requires n + m bits. Note that it is only because of the multiplication
—2n1 x —2m-1 = 2n+m=2 that we require those n + m bits (in 2C representation).

DIVISION OF INTEGER NUMBERS

UNSIGNED NUMBERS
= The division of two unsigned integer numbers A/B (where A is the dividend and B the divisor), results in a quotient Q and
a remainder R, where A = B x Q + R. Most divider architectures provide Q and R as outputs.

15 <= 0 00001111 «=m Q ALGORITHM
B = 9) 140 <=m A B =» 1001 10001100 «@um A
90 1001 R =20
50 10001 for i = n—lldowntoIO
45 1001 left shift R (input = a;)
i >

5 <= R 10000 if R 2B

1001 g; =1, R« R-B

1110 else

1001 endql

101 «m R end

= For n-bits dividend (4) and m-bits divisor (B):
v' The largest value for Q is 2™ — 1 (by using B = 1). The smallest value for Q is 0. So, we use n bits for Q.
v" The remainder R is a value between 0 and B — 1. Thus, at most we use m bits for R.
v IfA=0,B+0,thenQ =R =0.
v' If B = 0, we have a division by zero. The result is undetermined.

= In computer arithmetic, integer division usually means getting Q = |A/B].

= Examples: . . |
00001111 00000111 ! 000000111 ! 000010100
1010 J 10011101 ! 10101 J 10100001 ! 101110 J 101010001 ! 10100] 76100010
1010 ! 10101 ! 101110 ! 10100
157/10: | 161/21: _— | 337/46: —i | 418/20: —N
0= 15 10011 Lo =7 100110 ! g = 7 1001100| | o = 20 11000
R = 7 1010 'R = 14 10101 | R = 15 101110y , R = 18 10100
1 - 1 E— 1
10010| | 100011 | 111101 10010
1010 | 10101 | 101110
1 1 1
10001 | 1110 | 1111
1010 : :
_— 1 1 1
111 | |
6 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design

Winter 2017

SIGNED NUMBERS
= The division of two signed numbers A/B should result in Q and R such that A = B x Q + R. As in signed multiplication, we

first perform the unsigned division |A|/|B| and get Q' and R’ such that: |A| = |B] x Q" + R'. Then, to get @ and R, we apply:

Quotient Q Residue R
) —R’ A<0,B>0
AXB<0 —Q R A>0,B<0
R’ A=0,B>0
> ’ <0
AXB>0,B+0 Q R A<0,B<0

Important: To apply Q = —Q' = 2€(Q"), @’ must be in 2C representation. The same appliesto R = —R' = 2C(R'). So, if Q' =
1101 = 13, we first turn this unsigned number into a signed number — @’ = 01101. Then Q = 2€(01101) = 10011 = —13.

011011 27
Example: ==

0101 5 11011
v Convert both numerator and denominator into unsigned numbers: —

v
v

v

Example:

v
v
v
v
v

Example:

v

v Convert both numerator and denominator into unsigned numbers:

101
% = Q' =101, R’ = 10. Note that these are unsigned numbers.

GetQand R: A<0,B>0-—>0Q=Q =0101=5,R=R =010 = 2.
Note that @ and R are signed numbers.

Verification: 27 =5 x 5 + 2.

0101110 _ E
1011 -5
Turn the denominator into a positive number —

0101110

0101
Convert both numerator and denominator into unsigned numbers:
1Al

B Q' = 1001, R" = 001. Note that these are unsigned numbers.

GetQand R: 4> 0,B<0— Q =2C(Q) =2C(01001) = 10111 = =9, R = R’ = 001 = 1.

Verification: 46 = -5 x —9 + 1.

10110110 _ —74
01101 13

. . 01001010
Turn the numerator into a positive number - ———

01101
1001010

1101

101110 _ |4
101 |B|

00101

lOl) 11011
101ll

111
101

10

001001

101) 101110

101}]|

0110
101

1

0000101

llOl) 1001010
1101”

4 % = Q' =101, R" = 1001. Note that these are unsigned numbers. 10110
v GetQandR: A< 0,B>0— Q=2C(0101) = 1011 = =5, R = 2C(R") = 2€(01001) = 10111 = —9. 1101
e e 1001
v’ Verification: —74 = 13 x =5 + (-9).
Example:%:%;’1 0001110
v Turn the numerator and denominator into positive numbers — 22210t lll) 1100101
111
v Convert both numerator and denominator into unsigned numbers: % — i
1011
4 % = Q' = 1110, R’ = 11. These are unsigned numbers. 111
v GetQandR:A<0,B<0—(Q=0Q =01110 =14, R = 2C(R") = 2€(011) = 101 = —3. “Tooo
o 111
v’ Verification: =101 = -7 x 14 + (=3). —
11

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design

Winter 2017

BASIC ARITHMETIC UNITS FOR INTEGER NUMBERS

Boolean Algebra is a very powerful tool for the implementation of digital circuits. Here, we map Boolean Algebra expressions

into binary arithmetic expressions for the implementation of binary arithmetic units. Note the operators *+’, *.” in Boolean
Algebra are not the same as addition/subtraction, and multiplication in binary arithmetic.
ADDITION/SUBTRACTION
UNSIGNED NUMBERS
= 1-bit Addition:
v/ Addition of a bit with carry in: The circuit that performs this operation is called Half Adder (HA).
X + 0 + 0 + 1+ 1+
y 0 1 0 1
carryout €<— c s —> sum 00 01 01 10
xly|cs x \ .
X — s
oj1j o1 C
1j0j 01 (o
1j1 10
v’ Addition of a bit with carry in: The circuit that performs this operation is called Full Adder (FA).
Cy
X + X — | X—
carryout vy sum —S i X— —S = — S
Y— FA ! HA = Y— FA
L c, s J C — —C ; Y — —C 0_ — Co
= n-bit Addition: TR . c
The figure on the right shows a 5-bit addition. Using the truth table O o oo ouou out in N
method, we would need 11 inputs and 6 outputs. This is not practicall 15 01111+ RqR3%%1 %9
Instead, it is better to build a cascade of Full Adders. 10 01010 Ya¥Y3Y2Y1Yo
: v
For an n-bit addition, the circuit will be: 25: 11001 5453525150
c c Xn-1 Yn-1 X Yo X, Xy Yo
I e e e e e S e
Xp-1Xp-2- -+ X1Xy + COUI iCn Cn—l C3 C2 Cl CO: Cin
Yn1¥nooe - - V1Yo < FA «S <= FA < FA < FA <«
Vo s s B A o
Sn-1 S2 51 So
. Xi¥i —_ = —_— —_——
Full Adder Design c;\ 00 0l 11 10 S; = X3YiC; t X;y;Cy + X3YiCy + O X3ViCy
X ly:lc; | ¢c; S; 0 0 1 0 1 —_ [
e o B = ‘J s; = (%:®y;)c; + (x:0y;) ¢y
ojojop oo 1 [T\ 0 [/1\ 0
ojoj1j 0o 1 - - s; = x,®y,®c;
oj14o0 0 1
X.Y;
Oj1j1| 1 0 X700 01 11 10
1j0fo0 0 1 o | o 0 (1 A 0
1101 1 0 Civ1 = X3¥Y; t XG5 + ¥iCy
110 1 0 11 o 1 1 1
111 1 1 [o }
= Overflow
Xpn-1 Yn-1 Xy Y2 X3 Y1 Xy Yo X Y
e N = s e of
iC C c C c Co: Gi
i—L FA [« <2 A 2 A o« A 2" — oot F jcn
; 1 n

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer H

ardware Design

Winter 2017

n-bit Subtractor:

We can build an n-bit subtractor for unsigned numbers using Full Subtractor circuits. In practice, subtraction is better
performed in the 2's complement representation (this accounts for signed numbers).

b b. Xp-1 Yn-1 X Yo X1 Y1 Xy Yo
ot n A 20 2 U2 A U2 A U A
Ep-1%p-2+ -« X1%0 T p . 1 b, b, b, 5 b, by ! biy
Yn-1¥n-2+ - - ¥1¥Y0 < FS |€«— - <— FS € S <« FS [«
dp1dy -+ -dydg i 7777777777777777777777777777777 ii 7777777777777777777 i 777777777777 |
n-1 2 1 0
. £
Full Subtractor Design b\ 00 01 11 10 4. = _.y,_, 4 x;b_ + ZT b, + xy.b.
X |yi|bs | b ds 0 0 |[1] 0| 1] S
e T B i = (X,Qy;)b; + (x;@y;) by
g 8 g g g 11 o1} o
- S d; = x,®y,®b;
ofl1lo| 1 1 ey,
0J1p1}1 1 0 N 00 01 11 10
100 0 1 ol o N) 0 0
1j0]1 0 O
1/1/0] 0o O Rt by, = xy; + xby + yib;
1(11]1 1 1 o)

SIGNED NUMBERS

overflow Gr

Subtraction: A — B = A + 2C(B). In 2C arithmetic, subtraction is actually an addition of two numbers.

The figure depicts an n-bit adder for 2’s complement numbers:

Xn-1 Yn-1 X Y2 X1 1
i ””” R R {2 A T AR
Cpho1 Cjy C, Cy
out FA |l«<—~... «1 FA [« FA <
”””””” A A
Sn-1 Sy S

So

The digital circuit for 2C subtraction is based on the adder. We account for the 2’s complement operation for the subtrahend
by inverting every bit in the subtrahend and by making the c;, bit equal to 1.

Xpn-1¥Yn-1 Xy, Yo X1 Y1 Xo Yo
c Co1 c Cy C;
Cout<3—|”— FA |« <« FA < FA <
overflow_@ 3 ;
i | | |
Sn-1 Sy S So

Adder/Subtractor Unit for 2's complement numbers:

We can combine the adder and subtractor in a single circuit if we are willing to give up the input c:..
Yo
|

OUt

X3

y
|

2 X1 §|/1 Xy

*_I_

X Y
n n
Y
cout .+ cin=1
overflow <—
n
S

ﬁ/sub
add=0
sub=1

overflow <:(f

add/sub vy, |

0
0
1
1

ORrKHO ||H

0
1
0
1

add/sub —)D £
Yi —

S1 So
Adder/Subtractor: X Y
n n
v N+ _4lf addisub
n
N

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

MULTIPLICATION

UNSIGNED NUMBERS

= The figure shows the process for multiplying two unsigned numbers of 4 bits.

= A straightforward implementation of the multiplication operation is also depicted in the figure below: at every diagonal of
the circuit, we add up all terms in a column of the multiplication.

as; a, a; gy x

cin
x ¢ y by b, b, b,
4 ([| | [asbd [2zbg[@ibg [@obg
FULL asby |ayby| aiby|jagb;
ADDER asb, |aby |aiby jagh,
i asby |aybs a;bg |agbs
S N N N N S ~—
cout P, Ps Ps Pa Ps P, P1 Pg
b (3) b(2) b(1l) b (0)
a0 —— - o o
apb; _T apb _T apb, _T ayby J
_G—o _2<:|—0 _G—o _G—o
Mo3 Moy Mo My
So3 So2 So1 S

> 2PN,
—e Y —eo la/er—o a/;(j—o p(O)

a(2)

a(3)

10 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

= An alternative implementation of the multiplication operation is depicted below for 4-bit unsigned numbers. It is much simpler
to see how only two rows are added up at each stage.

0000 = [9000 +
(X X X 2000
XYY X) 00000
poo;;/,—%oood
0000 0000000 +
0000 > 0000

a; 0 as a, a; a,
Py | | b,
b;
bl
PU PU PU PU «— O
Cout FA Cin
b2
PU PU PU PU «— O
by
PU PU PU PU «— 0
[| ! | !

b9 Pe Ps Py Ps3 P2 P1 Po

SIGNED NUMBERS (2C)
= This signed multiplier uses an unsigned multiplier, three adder subtractors (with one constant input), and a logic gate.
v" The initial adder/subtractor units provide the absolute values of A and B.
v The largest unsigned product is given by 2"*™~2 (n + m — 1 bits suffice to represent this number), so the (n + m)-bit
unsigned product has its MSB=0. Thus, we can use this (n + m)-bit unsigned number as a positive signed number. The
final adder/subtractor might change the sign of the positive product based on the signs of A and B.
0+X,X=0
0—-X,X<0
v' Thus, the absolute value |X| can have at most n + 1 bits. To avoid overflow, we sign-extend the inputs to n + 1 bits. The
result |X| has n + 1 bits. Since |X| is an absolute value, then |X|y = 0. Thus, we can get |X| as an unsigned number by
discarding the MSB, i.e., using only n bits: |X|,_, downto |X|,.
v Alternatively, we can omit the sign-extension (since we are discarding |X|,, anyway), and we will get |X| as an unsigned
number. If we need |X| as a signed number (for further computations), we append a ‘0’ to the unsigned number.

= Absolute Value: For an n-bit signed number X, the absolute value is defined as: |X| = {

I A . B
Absolute Value Circuit ! o Signed o Signed
: n% n An—l m m Bm—1
signed !
n - +- 4- +- 4
| X! Ll 18]
: 0 " . ! unsigned "y ™ unsigned
:n+1% n+1 E = i An_1||Bm—1
! ! : ARRAY 1l
! +- 4 | i MULTIPLIER
Lo ! H 0
U X, X, =0 i x| : unsigned
signed r1din = unsigned : n+m n+mp
unsigned W |X|,—1 ... 1X1o | - +-].
| n+m
: P Y signed

11 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

COMPARATORS

UNSIGNED NUMBERS

= For A = asaya,ay, B = b3b,b, by ZSjDOL
3

v

A > B when: a
Oriaz;=hsanda, =1,b, =0 2 A=B
OI'I as = b3,a2 = bz and a, = 1,b1 =0 a, e —
OI’: az = b3,a2 = bz,al = bl and Ag = 1,b0 =0 blj
D
bo

. —J A<B
A ey S 23_—0 >_ —9
4 COMPARATOR — A<B ¢
b, —Q L
e, — A>B
e;
a,
b, —Q
e | A<B
e, |
e; | —
a,—
b, —Q}
SIGNED NUMBERS
= First Approach:
v If A>=0and B = 0, we can use the unsigned comparator.
v If A< 0and B < 0, we can also use the unsigned comparator. €3
Example: 1000, < 1001, (-8 < -7). The closer the number is 4 A=B A=B
to zero, the larger the unsigned value is. A > ,_\
v If one number is positive and the other negative: UNSIGNED | A<B IDO—— A<B
Example: 1000, < 0100, (-8 < 4). If we were to Use the p mmsduy|COMPARATOR |
unsigned comparator, we would get 1000, > 0100,. So, in this A>B)Do—— A>B
case, we need to invert both the A>B and the A<B bit.
v' Example: For a 4-bit number in 2's complement:

— If az = b, A and B have the same sign. Then, we do not need to invert any bit.
— If ay # b3, A and B have a different sign. Then, we need to invert the A>B and A<B bits of the unsigned comparator.

es = 1 when a3 = b;. e; = 0 when az # bs.
Then it follows that: (A < B)signea = &39(4 < Bunsignea = €3®(4 < Bynsignea
(A> B)signed = e3®(4 > B)unstgned

= Second Approach:

v

Here, we use an adder/subtractor in 2C arithmetic. We need A B
to sign-extend the inputs to consider the worst-case scenario n n
and then subtract them. A B
We can determine whether 4 is greater than B, based on: ”'lu ottt Ra Ryp—1... Ro
R — {1 -A—-B<O0 1
n 0>A—B>0 n+ n+1
To determine whether A = B, we compare the n + 1 bits of R
to 0 (R = A — B). However, note that (A — B) € [-2™ + 1,2" — v
2]. So, the case R = —2™ = 10 ... 0 will not occur. Thus, we only n+ 1}
need to compare the bits R,,_; to R, to 0.

12 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design

Winter 2017

ARITHMETIC LOGIC UNIT (ALU)
= Two types of operation: Arithmetic and Logic (bit-wise). The sel (3..0) input selects the operation. sel (2..0) selects
the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist

of 8-input logic gates.

a 78&._) sel Operation Function Unit
8 ARITHMETIC 0000y <=a Transfer 'a' %
UNIT - Vo
b’.‘._q 0001fy<=a+l1l Increment 'a
0010fy<=a-1 Decrement 'a' g
0 001 1fy<=5b Transfer 'b' E
T 8 01 00fy<=b+1 Increment 'b'
W‘)y 01 01fy<=b-1 Decrement 'b' "ﬂ
1 0110fy<=a+hb Add 'a' and 'b' Q
01 11fy<=a-2>b Subtract 'b' from 'a'
> A 1 00 0})y <= NOT a Complement 'a'
LOGIC UNIT 1 001fy <=NOT Db Complement 'b'
1010fy<=aANDDb AND -
)y sel (3) 101 1)y <=aoORb OR o
1100fy<=aNAND b NAND &
1101)]y <=aDNOR Db NOR Q
4 1110y <=aXOR Db XOR
Se] sl 1111)y<=a XNOR b XNOR
BARREL SHIFTER
= Two types of operation: Arithmetic (mode=0, it implements 2!) and Rotation (mode=1)
= Truth table for a 8-bit Barrel Shifter:
result[7..0] (output): It is shifted version of the input data[7..0]. sel[2..0]: number of bits to shift.

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left). When shifting to the right in the Arithmetic
Mode, we use sign extension so as properly account for both unsigned and signed input numbers.

mode = 0. ARITHMETIC MODE mode = 1. ROTATION MODE
dir |dist[2..0] data[7..0] |result[7..0] | dir [dist[2..0] data[7..0] |result[7..0]
X 000 abcdefgh abcdefgh X 000 abcdefgh abcdefgh
0 001 abcdefgh bcdefghO 0 001 abcdefgh bcdefgha
0 010 abcdefgh cdefgh00 0 010 abcdefgh cdefghab
0 011 abcdefgh defgh000 0 011 abcdefgh defghabc
0 100 abcdefgh efgh0000 0 100 abcdefgh efghabcd
0 101 abcdefgh fgh00000 0 101 abcdefgh fghabcde
0 110 abcdefgh gh000000 0 110 abcdefgh ghabcdef
0 111 abcdefgh h0000000 0 111 abcdefgh habcdefg
1 001 abcdefgh aabcdefg 1 001 abcdefgh habcdefg
1 010 abcdefgh aaabcdef 1 010 abcdefgh ghabcdef
1 011 abcdefgh aaaabcde 1 011 abcdefgh fghabcde
1 100 abcdefgh aaaaabcd 1 100 abcdefgh efghabcd
1 101 abcdefgh aaaaaabc 1 101 abcdefgh defghabc
1 110 abcdefgh aaaaaaab 1 110 abcdefgh cdefghab
1 111 abcdefgh aaaaaaaa 1 111 abcdefgh bcdefgha
data3 [[[|
shifter to shifter to rotate to rotate to
left right left right
. 3\@>r401w>q'm Xo) Pu/ \@)H N 0O w}/ \@>r+01v>qvm o Pu/ \@>r101w>w [ToRNe) f//
dist X 7 X 7 X 7 \
dir 0 1 0 1
mode 1

T
result

13

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

FIXED-POINT (FX) ARITHMETIC

INTRODUCTION

FX FOR UNSIGNED NUMBERS

We know how to represent positive integer numbers. But what if we wanted to represent numbers with fractional parts?
Fixed-point arithmetic: Binary representation of positive decimal numbers with fractional parts.

FX number (in binary representation): (b,_1by_5 ... bybg.b_1b_5 ...b_}),

Conversion from binary to decimal:

n-1
D= Z bix2i=b, X2" V4 b, 3 x2" 24 b by x 2V + b x 20+ by X271+ by x272 4+ b_ x 27K
i=—k

Example: 1011101, = 1x 23 +0x 22 +1x2'+1x2°4+1x271+0x22+1x 273 =11.625

To convert from binary to hexadecimal:
Binary: 10101.10101 mm) (0001 0101.1010 1000
Y 2 ;lj l_l_lx_r_ll _Y_ll

5 . A

hexadecimal: 1 8

Conversion from decimal to binary: We divide the number into its integer and fractional parts. We get the binary

representation of the integer part using the successive divisions by 2. For the fractional part, we apply successive

multiplications by 2 (see example below). We then combine the integer and fractional binary results.

v' Example: Convert 31.625 to FX (in binary): We know 31 = 11111,. In the figure below, we have that 0.625 = 0.101,.
Thus: 31.625 = 11111.101,.

Number in Number in Number in Number in
base 10 1 base 2 , lbase 10 , base 2
Y Y
0.625 I:> 2222, 0.7 I:> 22722,
'MSB ~_MSB

0.625x2 = 1.25 =[(1)+ 0.25 0.7x2 = 1.4 =|1)+ 0.4
FX] F_’/
0.4x2 = 0.8 =]0 + 0.8

0.25x2 = 0.5 =|0 + 0.5 —]
K—__/

0.8x2 =1.6 =|]1 + 0.6

_/

0.522 =1 =1+Oj K\

' 0.6x2 = 1.2 = |1 + 0.2

0.101
2 stop here! K___/

0.2x2 = 0.4 = |0 + 0.4
_/

0.4x2 = 0.8 =0 + 0.8

¥0.10110 0110 ...,

FX FOR SIGNED NUMBERS

Method: Get the FX representation of +379.21875, and then apply the 2's complement operation to that result.

Example: Convert -379.21875 to the 2's complement representation.

v 379 =101111011,.0.21875=0.00111,. Then: +379.21875 (2C) = 0101111011.00111,.

v" We get -379.2185 by applying the 2C operation to +379.21875 = -379.21875 = 1010000100.11001, = 0xE84.C8.
To convert to hexadecimal, we append zeros to the LSB and sign-extend the MSB. Note that the 2C operation involves
inverting the bits and add 1; the addition by ‘1’ applies to the LSB, not to the rightmost integer.

14 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design

Winter 2017

INTEGER REPRESENTATION
" 1 — bit number: b,_1b,_, ...by

UNSIGNED SIGNED
n-1 n-2
Decimal _ o — _on-1 Z i
oo D= Z; b2 D=2 thist) b2
1= i=
Range of [0,2" — 1] [—2n-1 2n-1 _ 1]
values

FIXED POINT REPRESENTATION

= Typical representation [n p]: n — bit number with p fractional bits: b,,_,_1b,_,_5 ... bo. b_1b_5 ...b_,,

n
e [
UNSIGNED SIGNED
n-p-1 n—-p-2
Decimal i pe i
e D= Z b;2! D=—20P1p, .+ Z b2
i=—p i=—p
Range of 0 2"-1 ~ ~ —-2nt gnml—q) o omo1 o
values [z_p' 2P] =[0,2"7P —27P] TR = [—2n-P-1 gn—p-1_ 2-P]
. 2nP — 7P b1
Dynamic % =2m_1 | _ | — on-1
Range [277] [2-7|
(dB) = 20 x log;o(2" = 1) (dB) = 20 x log,, (2™ 1)
Resolution 2-p 2-p
(1LSB)

= Dynamic Range:

Dynamic Range =

largest abs.value

smallest nonzero abs.value

Dynamic Range(dB) = 20 X log,o(Dynamic Range)

= Unsigned numbers: Range of Values

2°p
H—F
0 27P 2n-P 2n7P — 27P
= Signed numbers: Range of Values
2°p
H——HHH
—2n-p-1 —27P Q0 27P 2np=1l_p-p
= Examples:
FX Format Range Dynamic Range (dB) Resolution
[87] [0, 1.9922] 48.13 0.0078
UNSIGNED [12 8] [0, 15.9961] 72.24 0.0039
[16 10] [0, 63.9990] 96.33 0.0010
[8 7] [-1, 0.9921875] 42.14 0.0078
SIGNED [12 8] [-8, 7.99609375] 66.23 0.0039
[16 10] [-64, 63.9990234375] 90.31 0.0010

15

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design Winter 2017
FIXED-POINT ADDITION/SUBTRACTION
= Addition of two numbers represented in the format [n p]: | n-p | P | +
AX2P+Bx2P=(A+B)x2P n-p | p
We perform integer addition/subtraction of A and B. We just need to interpret the result
differently by placing the fractional point where it belongs. Notice that the hardware is | n-p+1 | P |

the same as that of integer addition/subtraction.

When adding/subtracting numbers with different formats [n p] and [m k], we first ne

ed to align the fractional point so that

we use a format for both numbers: it could be [n p], [m k], [n —p + k k], [m — k + p p]. This is done by zero-padding and
sign-extending where necessary. In the figure below, the format selected for both numbers is [m k], while the result is in

the format [m + 1 k].

[pp] o | pyllere] =+ M-
| mx | k | | m-x | k |
| m-k+1 | k |
Important: The result of the addition/subtraction requires an extra bit in the | | | n-p | P - +
worst-case scenario. In order to correctly compute it in fixed-point
arithmetic, we need to sign-extend (by one bit) the operators prior to m-k | k |
addition/subtraction.
| m-k+1 | k |

Multi-operand Addition: N _numbers of format [n pl: The total number of bits is

given by : n+ [log, N] (this can be

demonstrated by an adder tree). Notice that the number of fractional bits does not change (it remains p), only the integer

bits increase by [log, N1, i.e., the number of integer bits become n — p + [log, N1.

Examples: Calculate the result of the additions and subtractions for the following fixed-point numbers.

UNSIGNED SIGNED
0.101010 + 1.00101 - 10.001 + 0.0101 -
1.0110101 0.0000111 1.001101 1.0101101
10.1101 + 100.1 + 1000.0101 - 101.0001 +
1.1001 0.1000101 111.01001 1.0111101
Unsigned:
= = = O 000 O O O = o= - O — 4+ 0 0O - O ?OOHOOOOOOO
g T T T T T T T T o W W T MWW, g T T T T
O 0O OO U O O L O o0 0 0 0 0 0 0.0 O 0O 0O 0O O O 0O O 0O 0O 0O O O O VO L L O
0.1 010100 + 1.001 0100 - 10.1101+ 100.1000000 +
1.01 10101 0.0000111 1.1 001 0.1 000101
10.0001001 1.00 01101 100.0110 101.0000101
Signed:
TERRRNRRRS 2R LRS
LS“LSOUI\ Uw Um Uq‘ Um UNL)HUO (_e)ok.')\k;oum ka.g’k.:\\‘u‘_‘ UO
110.001000+ 0.01 01000 - .’ 0.01 01000 +
111.001101 1.01 01101 0.1 010011
101.01 0101 0.1 111011
OCO0OO0OO0Odd-d - OO TH—Hdo0o 44+ 00O0O
L T 1t | 1 1 T [I 1 o I 1muw_w_on ononmonou
Um er U’\ ULD Um (.)<f Um UN UH (.? UH (.)m (.)'Jo U’\ K.)‘D Um J Um UN UH L?
1000.01010 - 1000.01 010 + 101.0001000+
1111.01001 »0000_10111 111.0111101
1001.00 001 100.1 000101

16

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

FIXED-POINT MULTIPLICATION

= Unsigned multiplication
Multiplication of two signed numbers represented with different formats [n p], [m k]: | n-p | P | %

[mk | k |

n+m-p-k | ptk |

(Ax27P)x (B x27%)=(4xB)x 2Pk, We can perform integer multiplication of A and B and then place the fractional
point where it belongs. The format of the multiplication result is given by [n+m p + k]. There is no need to align the
fractional point of the input quantities.
Special case: m =n,k =p az a a3 X
(A% 27P)x (B x27P) = (AXB)x272P. Here, the format of the b; b, by Dby
multiplication result is given by [2n 2p]. asb, a,b, a;b, ago,

asb, a,b; a;b; agb;
asb, a,b, a;b, agb,
azb; a,b; ab; agb;

v Multiplication procedure for unsigned integer numbers:

Py Ps Ps Py b3 Py b, Po

Example: when multiplying, we treat the numbers as integers. Only 2.75 = 10.11 x » 1011 x
when we get the result, we place the fractional point where it belongs. 6.5 = 110.1 1101
1011
0000
1011
1011
10001111
17.875 =1 000 1.1 11

= Signed Multiplication: We first take the absolute value of the operands. Then, if at least one of the operands was negative,
we need to change the sign of the result. We then place the fractional point where it belongs.

Examples:
01.001 x 01.001 x »110111X 10.0001 x» 01.1111 x » 101001
1.001001 0.110111 1001 01.01001 01.01001 11111
110111 101001
000000 101001
000000 101001
110111 101001
101001
111101111
$ 10011110111
E R 010011‘{10111
&
1.000010001 101.100001001
110101
1000.000 x gh 01000.000 x g 1101011 x 01101010 x gy 0110101 % g 101
10.010101 01.101011 1000000 : . _—
110101
0000000 000000
1101011 110101
1101011000000 T 0001001
01101.011000000 0.0000100001001

1.1111011110111

17 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design

Winter 2017

FIXED-POINT DIVISION

= Unsigned Division: A¢/B;

We first need to align the numbers so they have the same number of fractional bits, then divide them treating them as
integers. The quotient will be integer, while the remainder will have the same number of fractional bits as Ay.

Ay is in the format [na a]. By is in the format [nb b]

Step 1: For a = b, we align the fractional points and then get the integer numbers A and B, which result from:

A=Af><2a B=Bf><2a
Step 2: Integer division: % =4

Br

The numbers A and B are related by the formula: A = B x Q + R, where Q and R are the quotient and remainder of the

integer division of A and B. Note that @ is also the quotient of ;ﬁ.
f

Step 3: To get the correct remainder of ;#, we re-write the previous equation:
f

A x20= (B x2%)xQ+R—>Ar =B, xQ+ (Rx279)

Then: Qf = Q, Rf =R X 2—(1

Example:
1010.011

111
Step 1: Alignment, a = 3
1010.011 _ 1010.011 _ 1010011

111~ 11100 ~ 11100

Step 2: Integer Division

1010011
———=1010011 = 11100(10) + 11011 - Q = 10,R = 11011
11100
Step 3: Get actual remainder: R x 27¢
Ry =11.011
Verification: 1010.011 = 11.1(10) + 11,011, @y = 10,Rr = 11011

v Adding precision bits to ¢, (quotient of A;/B;):

The previous procedure only gets Q as an integer. What if we want to get the division result with x nhumber of fractional

bits? To do so, after alignment, we append x zeros to A x 2 and perform integer division.

A=A X 20 x2% B =Bfx2%

A x 294 = (B x29) X Q+R > Ap = By x (Q x 27%) + (R x 27%7%)

Then: Qf = Q x27%, Rg =R X 27%7*

1010,011

Example: i1

with x = 2 bits of precision

Step 1: Alignment, a = 3
1010.011 1010.011 1010011

111~ 11100 =~ 11100
Step 2: Append x = 2 zeros
1010011 101001100

11100 ~ 11100

Step 3: Integer Division
101001100

11100
Q@ =1011,R = 11000

Step 4: Get actual remainder and quotient (or result): Qf = Q X 27*, R, = R X 27%7*

Q; = 10.11,R; = 0.11000

Verification: 1010.01100 = 11.1(10.11) + 0,11000.

= 101001100 = 11100(1011) + 11000

18

Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

= Signed division: In this case (just as in the multiplication), we first take the absolute value of the operators 4 and B. If
only one of the operators is negative, the result of abs(A)/abs(B) requires a sign change.
What about the remainder? You can also correct the sign of R, (using the procedure specified in the case of signed integer
numbers). However, once the quotient is obtained with fractional bits, getting Ry with the correct sign is not very useful.

= Example: We get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

101199 To positive (numerator and denominator), alignment, and then to unsigned: a = 4; 2221%01 _ 0100111 _ 100111
1.011 1.011 0.1010 1010
0000111110 1001110000
Append x = 4 zeros: ———
1010) 1001110000 pp_ _ T 1010
1010 Unsigned integer Division:
10011 Q =111110,R = 100
1010 - Qf =11.1110 (x = 4)
10010 101.1001
1010 Final result (2C): o = 011111 (this is represented as a signed number)
10000
1010
1100
1010
100
v 2L 70 positive (numerator and denominator), alignment, and then to unsigned, a = 5; —2—0t — 210100 _ 10100
1.01011 0.10101 0.10101 10101
000001111
Append x = 4 zeros: 221200000
10101 ’ 101000000 pp) 7 10101
1010 1l Unsigned integer Division:
100110 Q =1111,R = 101
10101 > Qf =01111(x = 4)
100010 o1t
10101 Final result (2C): oo = 01111 (this is represented as a signed number)
11010
10101
101
209119, T positive (numerator), alignment, and then to unsigned, a = 4; $2210 = 911010 11010
01.01 01.01 01.0100 10100
000010100 110100000

Append x = 4 zeros: 10100
Unsigned integer Division:

10100J7170100000

sousal]

11000 Q@ =10100,R = 10000
10100 - Qf = 1.0100(x = 4) * Qf here is represented as an unsigned number
10000
Final result (2C): 121";10 =2€(01.01) = 10.11
v 2191999 T4 positive (denominator), alignment, and then to unsigned, a = 5: —or — 210101 _ 10101
110.1001 001.0111 001.01110 101110
000000111
1011197 Append x = 4 zeros: %
101010000 . . L 10
101110¢ Unsigned integer Division:
1001100 Q =111,R =1110
101110 - Qf =0.0111(x = 4)
111100
101110 Final result (2C): % =2¢(0.0111) = 1.1001
1110

19 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

ARITHMETIC FX UNITS. TRUNCATION/ROUNDING/SATURATION

ARITHMETIC FX UNITS

= They are the same as those that operate on integer numbers. The main difference is that we need to know where to place
the fractional point. The design must keep track of the FX format at every point in the architecture.

= One benefit of FX representation is that we can perform truncation, rounding and saturation on the output results and the
input values. These operations might require the use of some hardware resources.

TRUNCATION

= This is a useful operation when less hardware is required in subsequent operations. However | n-p | P
this comes at the expense of less accuracy.

= To assess the effect of truncation, use PSNR (dB) or MSE with respect to a double floating k
point result or with respect to the original [n p] format. n-p | p-k

= Truncation is usually meant to be truncation of the fractional part. However, we can also
truncate the integer part (chop off k MSBs). This is not recommended as it might render the number unusable.

ROUNDING

= This operation allows for hardware savings in subsequent
operations at the expense of reduced accuracy. But it is | n'p | P |0 | | n-p | P |1
more accurate than simple truncation. However, it requires <> <>
extra hardware to deal with the rounding operation.

= Forthe number by,_p_1by_p— . bo.b_1b_; ...b_,, if we want | np | p-k | np | p-k +
to chop k bits (LSB portion), we use the b,_,_; bit to
determine whether to round. If the by_,_; = 0, we just
truncate. If b,_,_; = 1, we need to add ‘1’ to the LSB of | n-p+l | p-k |

the truncated result.

SATURATION

= This is helpful when we need to restrict the number of integer bits. Here, we are asked to |
reduce the number of integer bits by k. Simple truncation chops off the integer part by k
bits; this might completely modify the number and render it totally unusable. Instead, in k n-k
saturation, we apply the following rules: n-p-k | P

n-p | P

v If all the k + 1 MSBs of the initial number are identical, that means that chopping by k
bits does not change the number at all, so we just discard the k MSBs.

v If the k + 1 MSBs are not identical, chopping by k bits does change the number. Thus, here, if the MSB of the initial
number is 1, the resulting (n — k)-bit number will be —27~%=P-1 = 10 ... 0 (largest negative number). If the MSB is 0, the
resulting (n — k)-bit number will be 27~*-P=1 — 2-P = 011 ...1 (largest positive number).

Examples: Represent the following signed FX numbers in the signed fixed-point format: [8 7]. You can use rounding or
truncation for the fractional part. For the integer part, use saturation.

= 1,01101111:
To represent this number in the format [8 7], we keep the integer bit, and we can only truncate or round the last LSB:
After truncation: 1,0110111
After rounding: 1,0110111 4+ 1 = 1,0111000

= 11,111010011:
Here, we need to get rid of on MSB and two LSBs. Let’s use rounding (to the next bit).
Saturation in this case amounts to truncation of the MSB, as the number won't change if we remove the MSB.
After rounding: 11,1110100+ 1 = 11,1110101
After saturation: 1,1110101

= 101,111010011:
Here, we need to get rid of two MSB and two LSBs.
Saturation: Since the three MSBs are not the same and the MSB=1 we need to replace the number by the largest negative
number (in absolute terms) in the format [8 7]: 1,0000000

= (011,1111011011:
Here, we need to get rid of two MSB and three LSBs.
Saturation: Since the three MSBs are not identical and the MSB=0, we need to replace the number by the largest positive
number in the format [8 7]: 0,1111111

20 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

FLOATING POINT REPRESENTATION
= There are many ways to represent floating numbers. A common way is:

X = +significand x 2° + e significand

E m

= Exponent e: Signed integer. It is common to encode this field using a bias: e + bias. This facilitates zero detection (e +
bias = 0). Note that the exponent of the actual number is always e regardless of the bias (the bias is just for encoding).
e €[—2F71, 2671 —1]

= Significand: Unsigned fixed point number. Usually normalized to a particular range, e.g.: [0, 1), [1,2).
m Format (unsigned): [m p]. Range: [0,2 _1] =[0,2mP —-27P], k = m—p

2P
| x| P

If k = 0 — Significand € [0,1 — 27P] = [0,1)
| If k = m — Significand € [0, 2™ — 1]. Integer significand.

Another common representation of the significand is using k = 1 and setting that bit (the MSB) to 1. Here, the range of the
significand would be [0,2! — 277], but since the integer bit is 1, the values start from 1, which result in the following
significand range: [1,2! — 27P]. This is a popular normalization, as it allows us to drop the MSB in the encoding.

IEEE-754 STANDARD

= The representation is as follows: sign bit biased exponent significand
+ e+bias £
X =+1.fx2¢
E P

= Significand: Unsigned FX integer. The representation is normalized to s = 1. f, where f is the mantissa. There is always
an integer bit 1 (called hidden 1) in the representation of the significand, so we do not need to indicate in the encoding.
Thus, we only use f the mantissa in the significant field.
Significand range: [1,2 — 27P] = [1,2)

= Biased exponent: Unsigned integer with E bits. bias = 2E~1 — 1. Thus, exp = e + bias — e = exp — bias. We just subtract
the bias from the exponent field in order to get the exponent value e.
v exp = e + bias € [0,2F — 1]. exp is represented as un unsigned integer number with E bits. The bias makes sure that
exp = 0. Also note that e € [-2E~1 + 11,2871,
v The IEEE-754 standard reserves the following cases: i) exp = 2F — 1 (e = 2E71) to represent special numbers (NaN and
to), and ii) exp = 0 to represent the zero and the denormalized numbers. The remaining cases are called ordinary
numbers.

= Ordinary numbers:
. e . [_9E-1 E-1 _

biased exponent significand IE{/Iange of be : [l 227 +2,2 ; 1(}- Jlargest exponent
- ax number:largest significand X

t | etbiase[1,2E-2 £ _ _
tasel] | max =111..1x 225 -1 = (2 — 27P) x 22 7*-1

E p Min. number: smallest significand x 2Smallest exponent

min = 1.00...0 x 272" 42 = p=2"+2

max (2-27P)x 221
Dynamic Range = P (2_2)5_1+2 =(2—27P) x 223

Dynamic Range (dB) = 20 x log;o{(2 — 27P) x 22E‘3}

= Plus/minus Infinite: +«

biased exponent significand Tl‘rl]e exp ﬁeldzi_s alstring (232_11’5. This is a special case
| + | et+bias = 25-1 £-0 | where exp = 25 — 1. (e =)ZE_1
+o0 = +2
E P

* Not a Number: NaN

biased exponent significand The exp field is a strings of 1's. exp = 2F — 1. This is a
special case where exp = 25 —1 (e = 25~1). The only
difference with too is that f is a nonzero number.

I+

et+bias = 2E-1 ££0

E |

21 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design Winter 2017
= Zero:

biased exponent significand Z_ero_ _ cannot be reprgsented with a normalized

n - ~ o =0 | significand s = 1.00...0 since X = +1.f x 2¢ cannot be

- etbias = = zero. Thus, a special code must be assigned to it, where

E P s =0.00...0 and exp = 0. Every single bit (except for the

sign) is zero. There are two representations for zero.
The number zero is a special case of the denormalized numbers, where s = 0. f (see below).

Denormalized numbers: The implementation of these numbers is optional in the standard (except for the zero). Certain
small values that are not representable as normalized numbers (and are rounded to zero), can be represented more precisely
with denormals. This is a “graceful underflow” provision, which leads to hardware overhead.

These numbers have the exp field equal to zero. The
tricky part is that e is set to —2-1 + 2 (not —25-1 + 1,
etbias = 0 ££0 | as the e+ bias formula states). The significand is
represented as s = 0. f. Thus, the floating point number
is X = +0.f x 272" '*2, These numbers can represent
numbers lower (in absolute value) than min (the

biased exponent significand

+

E P

number zero is a special case).

Why is e not —2E-1 + 1? Note that the smallest ordinary number is 2-2°'+2,

The largest denormalized number with e = —2E~1 + 1 is: 0.11...1 x 22° =1 = (1 — 27P) x 272" '+1,

The largest denormalized number with e = —2E~1 + 2 is: 0.11...1 x 22° =2 = (1 — 27P) x 272" '+2,

By picking e = —2E-1 + 2, the gap between the largest denormalized number and the smallest normalized is smaller. Though
this specification makes the formula e + bias = 0 inconsistent, it helps in accuracy.

Depiction of the range of values:
_(2 _ 2—p)22E_1—1 _Z—ZE_1+2 2—2E_1+2 (2 _ 2—p)22E_1—1
IR e |
| | [T T [TT] [T 1 | |

Underflow region
(or denormal numbers)

Overflow region

The IEEE-754-2008 (revision of IEEE-754-1985) standard defines several representations: half (16 bits, E=5, p=10), single
(32 bits, E = 8, p = 23) and double (64 bits, E = 11, p = 52). There is also quadruple precision (128 bits) and octuple
precision (256 bits). You can define your own representation by selecting a particular number of bits for the exponent and
significand. The table lists various parameters for half, single and double FP arithmetic (ordinary numbers):

Ordinary numbers Exponent . Dynamic Significand Significand
Min Y Max bilzs (E) Range of e Bias Rar!ge (dB) grange gbits (p)
Half 2714 (2 —2710)p+15 5 [—14,15] 15 180.61 dB [1,2 —2710] 10
single | 27126 | (2 —2723)2+1%7 8 [—126,127] | 127 1529dB | [1,2—272%] 23
Double | 271022 | (2 — 2-52)p+1023 11 [-1022,1023] | 1023 12318 dB [1,2 —2752] 52
Rules for arithmetic operations:

v' Ordinary number + (400) = +0 v' NaN + Ordinary number = NaN

v’ Ordinary number + (0) = too v (0) + (0) = NaN (+£00) + (+00) = NaN

v (+) X Ordinary number = oo v (0) X (o) = NaN (c0) + (=) = NaN

Examples:

F43DE962 (single): 1111 0100 0011 1101 1110 1001 0110 0010
e + bias = 11101000 = 232 —» e = 232—-127 =105

Mantissa = 1.0111101 111010010110 0010 = 1.4837

X = —1.4837 x 2195 = —6,1085 x 103!

007FADES5 (single): 0000 0000 0111 1111 1010 1101 1110 0101
e + bias = 00000000 = 0 — Denormal number - e = — 126

Mantissa = 0.111 11111010 1101 1110 0101 = 0.9975

X = 0.9975x 27126 = 1,1725 x 10738

22 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY

ECE-378: Computer Hardware Design Winter 2017
ADDITION/SUBTRACTION
by =£s5:2%, 51 =1.f, by = +5,2%, 5, = 1.f;

d b1 + bz = islzel i 52262

S2
> by + by = 5,29 £ 224 = (25, &

- by — b, = +s5.2% F

If e; = e,, we simply shift s, to the right by e; — e, bits. This step is referred to as alignment shift.
2:332 2%

52292 =

)xzexzsxze

2617€2 — 2€617€

2:382 20 = (isl + %) X 2% =sx2°

Normalization: Once the operators are aligned, we can add. The result might not be in the format 1.f, so we need to

discard the leading 0's of the result and stop when a leading 1 is found. Then, we must adjust e, properly, this results in e.

v For example, for addition, when the two operands have similar signs, the resulting significand is in the range [1,4), thus
a single bit right shift is needed on the significant to compensate. Then, we adjust e, by adding 1 to it (or by left shifting
everything by 1 bit). When the two operands have different signs, the resulting significand might be lower than 1 (e.g.:
0.000001) and we need to first discard the leading zeros and then right shift until we get 1.f. We then adjust e, by
adding the same number as the number of shifts to the right on the significand.

Note that overflow/underflow can occur during the addition step as well as due to normalization.

Example: s; = (isl + 5—2) =00011.1010

— pe1-ez
First, discard the leading zeros: s3 =11.1010
Normalization: right shift 1 bit: s=s3x271=1.11010

Now that we have the normalized significand s, we need to adjust the exponent e, by adding 1 to it: e = e; + 1:
(s3x27) x 28+l = gx2¢=11101 x 21

Example: b, = 1.0101 x 25, b, = —=1.1110 x 23
1.1110
b=bh, +b, =1.0101x 25—

S X 25 = (1.0101 — 0.011110) x 25

1.0101 —0.011110 = 0.11011. To get this result, we convert the operands to the 2C representation (you can also do
unsigned subtraction if the result is positive). Here, the result is positive. Finally, we perform normalization:
- b=b;+b, =(0.11011) x 2° = (0.11011 x 21) x 25 x 271 = 1.1011 x 2*

Subtraction: This operation is very similar.

Example: b, = 1.0101 x 25, b, = 1.111 x 2°
b=b, —b, =1.0101 x 25 —1.111 x 25 = (1.0101 — 1.111) x 2°

To subtract, we convert to 2C representation: R = 01.0101 — 01.1110 = 01.0101 + 10.0010 = 11.0111. Here, the result
is negative. So, we get the absolute value (|R| = 2€(1.0111) = 0.1001) and place the negative sign on the final result:
- b=b; —b, =—(0.1001) x 25

Example:

v X =50DAD000 - DOFADO0O:
50DAD000: 0101 0000 1101 1010 1101 0000 0000 0000
e + bias = 10100001 =161 » e =161 —127 = 34 Mantissa = 1.10110101101
50DAD000 = 1.10110101101 x 234

DOFADOOO: 1101 0000 1111 1010 1101 0000 0000 0000
e + bias = 10100001 = 161 » e = 161 — 127 = 34 Mantissa = 1.11110101101
DOFAD000 = —1.11110101101 x 234

AT e B T A
X =1.10110101101 x 234 + 1.11110101101 x 234 (unsigned addition) SISy Tddd s
1.10110101101+
X =11.1010101101 x 234 = 1.11010101101 x 23° l 1.11110101101
e + bias = 35+ 127 = 162 = 10100010
X = 0101 0001 0110 1010 1101 0000 0000 0000 = 516AD00O 11.10101011010

23 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

Example:
v X =60A10000 + C2F97000:
60A10000: 0110 0000 1010 0001 0000 0000 0000 0000
e + bias = 11000001 =193 » e =193 — 127 = 66 Mantissa = 1.0100001
60210000 = 1.0100001 x 2%¢

C2F97000: 1100 0010 1111 1001 0111 0000 0000 0000
e + bias = 10000101 =133 - e =133-127 =6 Mantissa = 1.11110010111

C2F97000 = —1.11110010111 x 2°

X =1.0100001 x 266 — 1.11110010111 x 26

1.11110010111
X =1.0100001 x 266 — BT E— x 266

Representing the division by 26° requires more than p + 1 = 24 bits. Thus, we can approximate the 2" operand with 0.

X =1.0100001 x 266
X = 0110 0000 1010 0001 0000 0000 0000 0000 = 60A10000

MULTIPLICATION
by = +s5,2%, b, = +5,2%
— by X by = (£5,2°1) X (£5,2%) = +(s; X 5,)261%¢
Note that s = (s; X s,) € [1,4).

Example:
by = 1.100 x 22, b, = —1.011 x 2%,

b=by x by, =—(1.100 x 1.011) x 26 = —(10,0001) X 2°,

Normalization of the result:
b = —(10,0001 x 271) x 27 = —(1,00001) x 27.

Note that if the multiplication requires more bits than allowed by the representation (32, 64 bits), we have to do truncation
or rounding. It is also possible that overflow/underflow might occur due to large/small exponents and/or multiplication of
large/small numbers.

Example:
v X =7A09D300 x OBEEF000:
7A09D300: 0111 1010 0000 1001 1101 0011 0000 0000
e + bias = 11110100 = 244 » e = 244 — 127 = 117 Mantissa = 1.00010011101001100000000
72090300 = 1.000100111010011 x 2117

OBEEFO000: 0000 1011 1110 1110 1111 0000 0000 0000
e + bias = 00010111 =23 > e =23 —-127 = —104 Mantissa = 1.11011101111000000000000
0BEEF000 = 1.11011101111 x 27104

X =1.000100111010011 x 217 x 1.11011101111 x 27104
X =10.00000010100011010111111101 x 23 = 1.000000010100011010111111101 X 21* = 1.6466 x 10*
e + bias =14 + 127 = 141 = 10001101

X = 0100 0110 1000 0000 1010 0011 0101 1111 = 4680a35F (four bits were truncated)

24 Instructor: Daniel Llamocca

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-378: Computer Hardware Design Winter 2017

DIVISION
bl = islzel, bz = iSZZeZ

b1 islzel S1
—_ — = =+ -=2617€
bz iSZZEz _SZ

Note that s = (%) € (1/2,2)
2
Here, the result might require normalization.

Example:
by = 1.100 x 22, b, = —1.011 x 2*

by 1.100 x 22 1.100
- —= = -
b, —1.011x 24 1.011
1.100,

Tor unsigned division, here we can include as many fractional bits as we want.

-2

With x = 4 (and a = 0) we have:
11000000

Tor7 = 11000000 = 10101(1011) + 11

Qr = 1,0101, R, = 00,0011

If the result is not normalized, we need to normalized it. In this example, we do not need to do this.

b, 1.100 x 22 L0101 x 2-2
> — = = 1.
b, —1.011x2*

Example

v’ X =49742000 + 40490000:
49742000: 0100 1001 0111 0100 0010 0000 0000 0000
e + bias = 10010010 = 146 —» e = 146 — 127 = 19 Mantissa = 1.11101000010000000000000

497420000 = 1.1110100001 x 21°

40490000: 0100 0000 0100 1001 0000 0000 0000 0000
e + bias = 10000000 = 128 » e = 128 - 127 =1 Mantissa = 1.10010010000000000000000

0BEEF000 = 1.1001001 x 2!

_1.1110100001 x 2%
11001001 x 21

0000000000100110110
Alignment:
11001001000 J 1111010000100000000 11110100001 1.1110100001 11110100001
11001001000} || 1.1001001 _ 1.1001001000 _ 11001001000
101011001000 1111010000100000000
11001001000 Append x = 8 zeros: ——
100100000000 .
11001001000 Integer division
- Q =100110110,R = 1011101000 » Qf = 1.00110110
101011100000
11001001000
100100110000
11001001000
10111010000

19
Thus: X = % =1.0011011 x 218 = 1.2109375 x 218 = 317440

e + bias = 18 + 127 = 145 = 10010001

X = 0100 1000 1001 1011 0000 0000 0000 0000 = 489B0000

25 Instructor: Daniel Llamocca

